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Abstract Cloud gaming is a new paradigm that is en-

visaged to play a pivotal role in the video game in-

dustry in forthcoming years. Cloud gaming, or gam-

ing on demand, is a type of online gaming that al-

lows on-demand streaming of game content onto non-

specialised devices (e.g., PC, smart TV, etc.). This ap-

proach requires no downloads or game installation be-

cause the actual game is executed on the game com-

pany’s server and is streamed directly to the client.

Nonetheless, this revolutionary approach significantly

affects the network load generated by online games. As

cloud gaming presents new challenges for both network

engineers and the research community, both groups need

to be fully conversant with these new cloud gaming

platforms. The purpose of this paper is to investigate

OnLive, one of the most popular cloud gaming plat-
forms. Our key contributions are: (a) a review of the

state-of-the-art of cloud gaming; (b) reverse engineer-

ing of the OnLive protocol; and (c) a synthetic traffic

model for OnLive.
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1 Introduction

Although these days the traffic generated by networked

gaming (i.e., by video game platforms such as PC, Xbox

360, PlayStation 3, and Nintendo Wii) only represents

0.03% (77 PB) of total Internet traffic, it is expected

to experience a 52% Compounded Annual Grouth Rate

(CAGR) by 2016 [9], and become the Internet’s traffic

segment with the greatest expansion in the upcoming

future. Online gaming brings players from all over the

world together for fun and entertainment, and is re-

garded as one of the most profitable and popular Inter-

net services. As a consequence, the video games busi-

ness is expected to increase from $60.4 billion in 2009

to $70.1 billion in 2015 [14].

In a broader context, there is a growing trend to-

wards moving local applications to remote data cen-

ters: this paradigm is referred to as the cloud. This new

computing paradigm provides benefits such as: (a) a de-

crease in hardware and software requirements for clients

(enabling so-called thin clients). Users no longer need to

install programs locally and carry out periodic updates,

administration or maintenance tasks on their comput-

ers; (b) users may access their files, e-mail, music, and

movies from any device (e.g., PC, smartphone, tablet,

smart TV, etc.) any time, anywhere; and (c) develop-

ers do not need to devote resources to adapting their

software to different hardware platforms.

Many types of services taking advantage of the cloud

have appeared in recent years: cloud storage (e.g., Drop-

box, Google Drive), music-on-demand (e.g., Spotify, Pan-

dora), video-on-demand (e.g., Youzee, Netflix), docu-

ment editing and spreadsheets (e.g., Google Docs) and,

more recently, cloud gaming (e.g., OnLive, Gaikai).

From a network perspective, the cloud paradigm has

a direct impact on network load [47]. The traffic require-
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ment of cloud games in comparison to standard games

may increase by two orders of magnitude. To illustrate

this point, World of Warcraft, a popular online game,

has a bandwidth requirement in the vicinity of 55 kbps

in the most demanding situations [40], while OnLive

can require up to 5.6 Mbps [29]. While cloud comput-

ing reduces client hardware requirements, it may sig-

nificantly increase network requirements to secure good

Quality of Experience (QoE) of said services, as many of

them are traffic-intensive. In fact, some business mod-

els like Spotify greatly rely on the performance of the

network [17]: premium users require higher network ca-

pabilities than free users because they receive higher

quality streams.

In this paper we focus on the OnLive cloud gam-

ing platform. At the time of writing, there are only a

few cloud gaming service platforms available (among

them OnLive, Gaikai, GamingAnywhere, GameString,

G-cluster, Otoy, StreamMyGame, t5 labs, and iTSMY),

with some of them still being under development. In-

terestingly, Gaikai was recently purchased by Sony for

USD $380 million [43], and the mere fact that some of

the most influential video game companies are now in-

vesting in cloud gaming would suggest that this new

technology is positioned to take a considerable market

share of the video game industry. In theory, if all of the

“traditional” networked games were to be replaced with

cloud-based games, game-related traffic would take sec-

ond place in the overall traffic load of the Internet; be-

hind Internet video, but surpassing the file sharing and

web-related traffic categories.

In this light, network providers must be au fait with
this new service which is one of the most demanding

real-time services, both in bandwidth requirements (as

we will show in following sections), as well as in delay

requirements. This is because there is no computation

of the virtual world state on the client side, nor are

there mechanisms for dealing with increased latency or

packet loss on the client-side, or the so-called client side

prediction (e.g., dead reckoning). Therefore, network re-

quirements of cloud games are even greater than those

of “regular” games. Network providers will only be able

to handle this new service by upgrading their infrastruc-

tures to provide access technologies capable of dealing

with the stringent network requirements of cloud gam-

ing (as well as other cloud-based services), because cur-

rent access technologies (i.e., 802.11g, ADSL, DOCSIS)

may no longer be suitable to deliver high-quality cloud

services. Additionally, to enhance the QoE of end users,

network providers may prioritise cloud gaming flows

over other non real-time flows through traffic manage-

ment mechanisms, or even fine grain control, by priori-

tising specific flows (e.g., audio) within a cloud gaming

service.

Traffic management systems require a comprehen-

sive knowledge of traffic properties. Therefore, cloud

gaming traffic, as a relatively new type of service, should

be measured, and appropriate analyses should be made,

so that the traffic properties are identified and under-

stood. Furthermore, as deep packet inspection is very

sensitive to privacy issues, and port and IP based traffic

classification is not that accurate anymore, traffic clas-

sifiers are relying heavily on the statistical properties

of the traffic. Traffic models and synthetic traffic can

be used to both design and test such traffic classifica-

tion systems. In addition, analytical traffic models and

traffic generators based on these are invaluable tools

in both network operation and planning. Any network

simulation, emulation or testing in both real and emu-

lated environments is futile without good traffic models.

The usability of traffic models in testing procedures is

not just limited to network infrastructure, but is also

valuable to the research community in the development

and testing of new protocols, QoE studies, simulations,

etc.

As different games may have very distinct game play

mechanics and therefore traffic characteristics, traffic

models need to be simple and general enough to encom-

pass multiple games. Therefore, in this paper we com-

pare and model two games at the boundaries of feasible

traffic characteristics (i.e., games with the highest and

lowest bandwidth requirement). Also, as cloud gaming

traffic is very complex and comprises of diverse types of

information (e.g., user actions, video, audio, etc.) in the

modelling process it is very important to identify those

traffic properties which are game dependent or not, or

whether some flows have constant or variable bit rate,

and so on. In this fashion, inspection of other games

is significantly simplified as some traffic characteristics

are only platform-dependent.

Previously mentioned methods should be applicable

for cloud gaming services in general. Therefore, a com-

parison of different cloud gaming services is essential to

obtain the characteristics which are not platform spe-

cific, but rather are common to the whole cloud gam-

ing paradigm. For instance, when comparing the video

flows of two cloud gaming providers, the first step is

to understand the protocols employed and the different

traffic patterns generated. As the protocols employed

are most often proprietary, the only approach is to

reverse-engineer them. In this paper we take a first step

towards such a comparison of cloud gaming services by

analysing and reverse-engineering the OnLive protocol.

In our previous work [29], we carried out a traffic

measurement comparison between OnLive and Gaikai
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and concluded that there are several significant differ-

ences between the two platforms. However, to the best

of our knowledge, there are no previous works focusing

on the specific protocols used by these cloud gaming

platforms. As a consequence, we have focused our work

on conducting a reverse engineering study on OnLive,

leaving Gaikai for future study.

This paper has two main objectives: (1) to study

the OnLive protocol, based on extensive traffic traces

of several games; and (2) to propose a general OnLive

traffic model which can be used for network dimension-

ing, planning optimization and other studies.

The rest of this paper is organised as follows. Sec-

tion 2 presents previous works in the literature related

to cloud gaming and traffic modelling for online games.

Section 3 details the OnLive protocol, while measure-

ment methodology and main traffic flow characteris-

tics of the OnLive are discussed in Section 4. Section 5

presents the traffic generation model and provides an

experimental validation. Finally, conclusions and future

work are discussed in Section 6.

2 Related works

Since its inception, the Internet has continuously evolved,

nearly doubling every year [30]. In the 90s, web and e-

mail traffic accounted for the majority of exchanged

traffic. In the past decade, peer-to-peer and streaming

traffic took the lead with the advent of BitTorrent and

YouTube. Nowadays, social networks and cloud services

are becoming increasingly popular and are continuously

expanding their portion of the total traffic. For instance,

in the first half of 2013, Netflix accounted for almost a

third of the total downstream traffic in North America

[37].

In the case of video games, several studies have pre-

viously analysed the impact of online gaming on the

network. In [16] the authors studied several popular

online games. For instance, it was reported that Unreal

Tournament 2003 could be played by using 28.8 kbps

modems. Furthermore, the authors of [4] studied the

traffic load produced by the popular Call of Duty: Mod-

ern Warfare 2 game and reported that server-originated

traffic produces only 34 kbps, while client traffic is about

13 kbps. Later studies analysed World of Warcraft, one

of the world’s most popular video games, and reported

that it only requires a maximum 5 kbps uplink and a

55 kbps downlink [40], thus drawing the same conclu-

sion: traditional online video gaming is not a bandwidth-

hungry application at all.

Cloud computing has recently emerged as a new

paradigm for hosting and delivering services over the

Internet, and would appear to be a remarkable oppor-

tunity for the video game industry. The authors of [22]

have defined four requirements for cloud-based gaming

services:

– User responsiveness: to guarantee suitable respon-

siveness, interaction in the games should be kept

below 80 ms [10].

– High-quality video: to provide high quality video, in-

teractive video (1280 x 720 resolution), data should

be reduced as much as possible while still maintain-

ing quality.

– Quality of Service (QoS): to decrease latency and

avoid network bottlenecks, game traffic should be

prioritised. An example of such a technique was pre-

sented in [3].

– Operating costs: to minimize power consumption,

optimization techniques must be developed.

In this same paper, the authors defined two approaches

to game streaming:

– Graphics streaming : directly transmits the graphic

commands to the client device, and the rendering of

the image is carried out by the client device [19].

– Video streaming : the server renders the whole game

graphics scene, the framebuffer is captured, even-

tually downsampled to match the target resolution,

and encoded using standard video codecs such as

MPEG-2, MPEG-4 or H.264 [6], [20]. This approach

is most suitable for thin clients, because they lack

hardware-accelerated rendering capabilities [45], and

so is used by the majority of cloud gaming plat-

forms.

In [35] the authors evaluated the quality of streamed

online gaming over fixed WiMAX and concluded that

it is very sensitive to delays, and that the transmis-

sion latencies of WiMAX are near the edge of a smooth

gaming experience. In fact, it was noted that under

heavy traffic loads the gaming experience faced a radi-

cal degradation.

The authors of [5] performed a delay comparison

analysis of OnLive and StreamMyGame, and identi-

fied that OnLive implements a game genre-based dif-

ferential resource provisioning strategy to provide suf-

ficiently short latency for real-time gaming. However,

the work went no further into the characterisation of

basic traffic metrics of online games.

Unlike YouTube, OnLive is a real-time stream, which

means that the video source is streamed as it is cre-

ated. As such, no traditional compression techniques

can be applied to the entire video and consequently, the

server must compress the video in real-time to reduce

the bandwidth requirements (i.e., with H.246), albeit

increasing the latency.
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Furthermore, a QoE analysis of three game gen-

res was carried out in [28]: FPS (first-person shooter),

RPG (role-playing games) and ACT (action). The pa-

per concluded that the most sensitive games, with re-

spect to real-time strictness (a metric defined in the

paper), were FPS, followed by RPG and ACT.

The work presented in [11] analysed the traffic char-

acteristics of the OnLive cloud gaming platform under

different network parameter scenarios (capacity, latency

and packet loss), and compared it with the traffic ob-

tained from YouTube and a Skype video call. It con-

cluded that, as a service, OnLive is fundamentally dif-

ferent from Skype and YouTube (in terms of network

performance metrics), and that it adapts to changes in

network conditions (i.e., delay or bandwidth).

As previously mentioned, in [29] the authors anal-

ysed the traffic characteristics of OnLive and Gaikai.

It was pointed out that both platforms were similar in

their packet size distribution, but significantly different

in their packet inter-arrival times. Furthermore, it was

also observed that traditional online gaming is remark-

ably different from cloud gaming in terms of network

load and traffic characteristics.

Finally, Shea et al. analysed the main challenges

to the widespread deployment of cloud gaming [39].

In their work, the authors stated that OnLive uses a

proprietary version of the Real-time Transport Pro-

tocol (RTP) as well as a proprietary version of the

H.264/MPEG-4 AV encoder.

The next step to analyse video games traffic is to

create network traffic models that can be used for a

variety of purposes related to designing network infras-

tructures, architectures, protocols, etc. Research efforts

in online games traffic modelling have closely followed

the development of the online game market and the

popularity of certain game genres.

Initially, most works in this area were focused on

the First-Person Shooter (FPS) genre and followed the

modelling approach pioneered by Paxson [33]. The first

work of traffic modelling for games was done by Borella

[2], who studied the traffic of a popular FPS: Quake

I and its sequel Quake II. The author modelled the

empirical game traffic with analytical models of packet

inter-arrival times (IAT) and packet size (PS), while

also taking into account the hardware capabilities of the

computers on which the game was run. The following

works were focused on different games.

Lang et al. measured, analysed, and modelled the

network traffic of several FPS games. In [27] the au-

thors modelled the traffic of Quake III. In addition to

modelling PS and IAT, the impact of different graphic

cards, the number of players, and maps (i.e., virtual

worlds where the game takes place) were investigated.

The traffic of the game Halo by Microsoft for the Xbox

console was also analysed and modelled [25] as well

as Half-Life [26], where OpenGL versus software-based

rendering and its impact on network traffic was ex-

amined. Färber [15] analysed traces of Counter Strike,

which were gathered during a 36 hour LAN party in-

volving 37 players, and created a traffic model depen-

dent on the number of active clients. A different kind

of modelling approach was presented by Cricenti and

Branch [12] who modelled the traffic of Quake 4 using

mixed autoregressive/moving average (ARMA) models.

In addition to FPS games, Real-Time Strategy (RTS)

games such as Starcraft [13], and Massive Multiplayer

Online Role-Playing Games (MMORPGs) have also been

studied as a result of the increase in their popularity

among the player base. Svoboda et al. [42] analysed

traffic traces captured within the 3G mobile core net-

work and noted that WoW was among the top 10 TCP

services in the monitored network and consumed 1%

of all TCP traffic. They also provided a traffic model

for WoW. Wu et al. [46] modelled the traffic of one of

the most popular MMORPGs in China - World of Leg-

end, while Kim et al. [21] presented traffic models for

Lineage.

As the traffic of MMORPGs is highly variable and

difficult to model, new approaches to traffic modelling

have appeared in the literature. Shin et al. developed

novel transformational modelling procedures and com-

pared them to standard modelling techniques. A fur-

ther approach taken by several research groups was to

classify user behaviour at application level and model

separate behaviours [23]. All classification approaches

[44,32,41] used WoW as their case study.

As cloud gaming is still a relatively new technology,

there are still several aspects that need detailed inves-

tigation. To compare different services and extract the

general characteristics of cloud gaming traffic indepen-

dent of the platform, understanding the protocols em-

ployed by different cloud gaming providers is crucial.

As these protocols are usually proprietary, they must

be reverse-engineered to be able to understand their

procedures and the traffic patterns they generate. To

the best of our knowledge, no reverse engineering of

the protocols used by cloud gaming platforms or traffic

models have yet been proposed. Therefore, in this pa-

per we carry out a reverse engineering of the OnLive

protocol and propose a network traffic model for this

platform. The main purpose is to provide the research

community and network engineers with knowledge of

the network load generated by these emerging applica-

tions; which, in turn, will help to design future network

infrastructure.
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3 The OnLive Protocol

OnLive is a cloud gaming platform available for Win-

dows and Mac OS X. Additionally, it is also supported

by Android and iOS devices (smartphones and tablets)

and some recent smart TVs, from vendors such as LG

and Sony. According to OnLive’s website [31], mini-

mum requirements include a network connection with

minimum bandwidth of 2 Mbps to render content at

1024 x 576 resolution. For content at 1280 x 720 res-

olution, a network connection of 5 Mbps or higher is

recommended. OnLive requires a local installation of

its own client software.

We have studied the behaviour of the OnLive proto-

col by analysing the packet traces previously employed

to characterise the aggregated OnLive traffic [29]. On

closer inspection, we were able to identify the different

flows that compose such traffic, and the protocols em-

ployed to transport it. To identify the purpose of each

flow, we have carried out additional experiments in the

same scenario (described later in Section 4.1), where we

have selectively filtered individual flows to observe the

effects on the gaming session.

It must be noted that, although we use the “On-

Live protocol” term, the OnLive platform employs a

number of different control and data protocols, trans-

ported using Transport Layer Security (TLS) over TCP

connections and RTP/UDP flows, which are used for a

variety of purposes during the different phases of an

OnLive session.

We have identified three main phases in an OnLive

session. In the first phase, the OnLive Client authen-

ticates (using a TLS/TCP connection) and measures

the latency and available bandwidth with different On-

Live sites. In the second phase, once a suitable OnLive

site is selected by the client, the OnLive servers start

streaming the OnLive menu. Finally, in the third phase,

the client selects a video game and starts playing. The

OnLive menu and the playing session are streamed in

a similar fashion, employing multiple RTP/UDP flows

multiplexed over a single UDP port (the default OnLive

UDP port is 16384).

We will now describe the most relevant details of

each phase of an OnLive session.

3.1 Phase 1: Authentication and global load balancing

The first phase of the OnLive protocol is shown in

Fig. 1. When the OnLive client software is executed, it

connects to one of the OnLive Authentication Servers1

1 To simplify the description of the OnLive session, we will
name the different protocols and roles of OnLive servers that

listed under the DNS name ds.onlive.net, by using

a TLS/TCP encrypted session (port 443). Therefore,

we are unsure of the messages exchanged through such

connection, although they are quite likely to be HTTP-

based and involve authenticating the user, as well as

probably obtaining the IP addresses of several OnLive

servers that are employed in the latency measurements

that follow.

At the time of this paper being written (March 2013),

OnLive has servers in at least 4 different locations (i.e.,

London in Europe, and Washington, Dallas and San

Jose in the USA). This allows OnLive to cover most

of the USA and western Europe within the 1,000 mile

radius which OnLive considers close enough to have ac-

ceptable Round-Trip Time (RTT), although other stud-

ies would suggest otherwise [7]. Once authenticated,

and given the importance of having a low RTT with the

server for game responsiveness, the client starts mea-

suring its RTT with those locations in order to find the

most suitable OnLive site.

These active RTT measurements are performed us-

ing what would seem to be a custom probing protocol

conveyed in short RTP/UDP messages, although its be-

haviour resembles other active measurement protocols

such as [38,18]. As observed in Fig. 1a, the client starts

sending batches of 9 RTP messages every 22 ms to 9

different IP addresses (UDP port 16384) belonging to 2

or 3 OnLive Probing Servers in each of the 4 locations.

Each RTP message comes from a different UDP port

of the client and has a different Synchronised Source

Identifier (SSRC) value, but all share the 0x2800XXXX

prefix which, as we will later see, is employed by the

OnLive Probing Protocol. The flow of RTP messages

with each particular Probing Server use consecutive Se-

quence Numbers and a Timestamp with the number

of microseconds since the client measurement session

started. Although the Payload Type is set to 0, which is

reserved for G.711 PCMU voice samples, the RTP pay-

load carries custom protocol messages where the first 32

bits seem to identify the particular type of message2.

The OnLive Probing Servers reply to the client with

similar RTP messages, changing the payload but keep-

ing the same SSRC, Sequence Number and Timestamp

as the client messages they are echoing. With this in-

formation the client can easily measure the RTT with

each server, as well as detect lost packets. After a fixed

number (i.e., 12) of RTP exchange rounds from the

first response from each server, the servers then send

have been identified, although the different roles may be per-
formed by the same physical server.
2 While we have identified more fields and the different mes-

sage types of this custom protocol, they are not described here
for sake of clarity.
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(a)
Phase
1a:
Choos-
ing
the
“clos-
est”
On-
Live
site.

(b)
Phase
1b:
Mea-
sur-
ing
the
RTT
and
down-
stream
band-
width.

Fig. 1 Phase 1 of the OnLive protocol.

a final RTP message with a slightly different SSRC=

0x28YYXXXX that signals the end of the measurement

session. As we do not have access to the source code of

the OnLive client software, we do not know the details

of the server selection algorithm but it appears to use

the RTT as its main metric, because the client system-

atically selects one of the first responding servers, which

are also the ones finishing the measurement session first.

At this moment, after estimating the RTT with each

server, the OnLive Client chooses the “closest” one and

starts a TLS/TCP session (port 443 again) with it.

Then, after exchanging a couple of encrypted messages,

the client starts another RTP-based measurement ses-

sion with that OnLive Probing Server (as shown in

Fig. 1b). This measurement session starts in a simi-

lar manner to the previous one, since it also employs

a SSRC=0x2800XXXX identifier (although different to

the previous one) and the short RTP messages from the

client are echoed by the server (16384 port), but now

the RTP messages are sent every 4 milliseconds and last

200 rounds. Moreover, when this latency measurement

session is over, the client sends an RTP message to a

different UDP port3 of the server to start an RTP flow

to measure the client’s downstream bandwidth.

Although this RTP flow maintains the same SSRC

as the previous one, now these RTP messages are only

3 This port is dynamic and larger than the OnLive’s 16384
default one. The port number is notified to the client using
the custom protocol encapsulated in echo RTP messages from
the server.

sent by the OnLive Probing Server and are not replied

by the client. These packets are quite large (1400 bytes)

and sent every 1.3 milliseconds until the 2292 sequence

number is reached (i.e., 3 seconds at 8.5 Mbps), when

the server stops sending them. There is a final exchange

of control RTP messages where the server notifies the

client of its public IP address and port; probably to

detect intermediate NATs. It is worth noting that all

OnLive RTP flows and TCP connections are initiated

by the client in order to avoid NAT and firewall issues.

Once these two active measurement sessions with

the selected OnLive Probing Server are over, the client

may now estimate both the round-trip time and the

available downstream bandwidth. If the client detects

that the measured performance is below the minimum

requirements, it shows a warning message to the user

and may adapt the streaming bit rate; as reported by

Claypool et al. [11].

The client probably then notifies the values of these

measurements back to the OnLive Probing Server by

means of the ongoing TLS/TCP connection. This mes-

sage from the client triggers some internal operations

with other OnLive Servers, because the response takes

several seconds to be returned by the Probing Server.

When the TLS/TCP response finally arrives, the client

starts the subsequent phase of the OnLive session, which

shows the main menu.
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Table 1 RTP/UDP flows of the OnLive Streaming Protocol.

Direction RTP SSRC RTP Payload Type Short name Alias

Downstream 0x00000000 100 Monitor QoS monitoring flow
Downstream 0x00010000 100 Control OnLive Control
Downstream 0x00030000 100 CBR-Audio Audio stream (CBR Codec)
Downstream 0x00040000 100 Cursor Cursor position
Downstream 0x00050000 101 VBR-Audio Audio stream (VBR Codec)
Downstream 0x00060000 96 Video Video stream
Downstream 0x00080000 100 Chat Voice Chat (Sound from other players)

Upstream 0x0000XXXX 100 Keys User input (keyboard and mouse buttons)
Upstream 0x0001XXXX 100 Mouse Cursor movement
Upstream 0x0004XXXX 100 Control-ACK OnLive Control ACK
Upstream 0x0008XXXX 100 Mic Voice Chat (Microphone from the user)

3.2 Phase 2: OnLive Main Menu

The main menu of OnLive is not a web page, nor even a

Flash Player animation, but rather an interactive video

that employs the same streaming protocol that is later

used to actually play the games. We will refer to this

protocol as the OnLive Streaming Protocol.

This phase starts as soon as the OnLine Probing

Server employed in the previous phase replies to the

TLS/TCP request of the OnLive Client. The response

should include the IP address of the OnLive Menu Server,

which is collocated (i.e., has the same IP /24 prefix)

with the selected Probing Server, but is probably a dif-

ferent machine (i.e., has a different IP address). At that

moment, the client sends an RTP message to the new

OnLive Menu Server.

The RTP messages of this phase, either from the

client or from the servers, are different to those em-

ployed by the OnLive Probing Protocol (i.e., SSRC=

0x28XXXXXXXX). In particular, in this phase there

are several RTP flows multiplexed in the same UDP

flow, both in downstream (server-to-client) and upstream

(client-to-server) directions. Table 1 shows all RTP flows

which, for the sake of clarity, have been named as in-

dicated in the Short name column. Fig. 2 depicts the

RTP subflows observed in this phase and, as shown,

the different RTP flows can only be identified by their

SSRC values. As observed, downstream flows from the

server employ fixed SSRC values while clients generate

different SSRCs for each OnLive session, although they

have a similar format (SSRC=0x000YXXXX) where

only the 2 last bytes change (i.e., 0xXXXX), while the

first two bytes (i.e., 0x000Y) identify the type of up-

stream flow. Most flows have a dynamic Payload Type

of 100, but the video and one of the audio flows have

96 and 101 Payload Types, respectively. Each RTP flow

keeps its own Sequence Number and Timestamp val-

ues, although in most of them the Timestamp field is

set to zero. However, the RTP messages of the OnLive

Streaming Protocol also include a Header Extension

MMSJ_OnLive_Fig3.pdf

Fig. 2 Phases 2 & 3: OnLive RTP subflows.

with three 32 bit-long fields that contain a microsecond

timestamp and a common counter of all RTP messages

generated by the source client/server, irrespective of the

RTP flow they belong to. This timestamp field in the

RTP extension header has allowed us to precisely mea-

sure the inter-arrival time of OnLive packets without

the jitter generated by the network.

Although, as previously mentioned, both the On-

Live menu and the gaming session employ exactly the

same Streaming Protocol, including all flows listed in

Table 1, in this subsection we will explain only those

flows related to control functions, while the game-related

flows will be explained in the following subsection.

As shown in Fig. 2, when the OnLive Menu Server

receives the first RTP message from the client, it starts

the Monitor flow that is employed to continuously track

the session’s Quality of Service (QoS). Whenever an

OnLive menu or gaming session begins, this flow starts

with a burst of 4 long RTP messages which are then

followed by a small (i.e., 48 bytes) RTP message sent

10 milliseconds later. This sequence is repeated several

times, apparently to measure the available bandwidth

with the new OnLive Menu Server (if it is too low - the

OnLive website states 2 Mbps - the client asks to recon-

nect). Then, until the end of the phase, the RTP flow

only sends one small RTP packet every second, proba-

bly to continuously measure the RTT to the server (the

client shows a warning when these packets are filtered).

The next RTP flows to appear are the Control and

Control-ACK, sent by the server and the client, respec-

tively. In fact, these two flows work together in what

we have interpreted as some kind of control protocol.

When the server wants to convey a message to the client
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it sends an RTP packet with SSRC=0x10000, that the

client then acknowledges with a fixed-size (i.e., 86 bytes-

long) RTP packet with SSRC=0x4XXXX. For relia-

bility, the server keeps sending the same payload ev-

ery 8.25 ms until it receives a response from the client

(which acknowledges each message). These control mes-

sage exchanges occur sporadically. For instance, at the

beginning and ending of the menu or gaming phases or

when the user makes a selection from the OnLive main

or in-game menus, such as configuring or muting4 the

audio, which the client then has to be notified about.

The client notifies the servers about the actions of

the user by means of the Keys flow (which will be de-

scribed later as it is mostly employed in the gaming

phase), as well as by means of the Mouse and Cursor

flows, which are related to the mouse pointer. These two

flows have a fixed rate of one RTP message every 50 ms

regardless of the client’s mouse movements. Moreover,

the packets of both flows are interleaved and there is

a 25 ms gap between a client and a server packet. The

size of the server’s Cursor flow payload is fixed (i.e., 16

bytes), whereas the client’s Mouse messages have a vari-

able size. Therefore, the client may send multiple mouse

movements per message, while the server acknowledges

them and may reply with the current cursor position.

This phase ends when the user selects a game to

play from the OnLive menu. At that moment, the On-

Live client stops communicating with the OnLive Menu

Server and opens a new UDP socket to send an RTP

message to the OnLive Gaming Server which also uses

the OnLive default 16384 port. In most of the sessions

captured, the Menu and the Gaming Servers have con-

secutive IP addresses, and in some cases they have the

same IP address.

3.3 Phase 3: Playing a game

The gaming phase also employs the OnLive Streaming

Protocol, including the QoS monitoring, control and

mouse pointer flows described in the previous subsec-

tion. We now complete the description of this protocol

by explaining the remaining RTP flows in Table 1 and

Fig. 2. These are the most important flows of this phase

and of the OnLive Streaming Protocol as such.

In particular, the Video flow has the highest rate be-

cause it carries the OnLive video stream. The RTP mes-

sages in this flow have a dynamic Payload Type (i.e.,

PT=96), with consecutive Sequence Numbers. How-

ever, the Timestamp field also carries a monotonically

4 Interestingly, the muting audio option does not interrupt
the audio flows, but simply notifies the client not to play
them.

increasing counter that has the same value for consec-

utive RTP messages and thus, may identify a burst of

packets. Moreover, the last packets of a burst are sig-

naled by setting the RTP Mark flag. The rate of the

flow varies depending on the movement and complexity

of the frames, thus it must employ a Variable Bit Rate

(VBR) video codec. The authors of [39] have stated

that OnLive uses a version of the H.264/MPEG-4 AV

encoder, but we have not been able to verify this.

The audio stream is not integrated into the video

RTP flow, but rather is sent as a separate flow. In fact,

we have identified two audio RTP flows (CBR-Audio

and VBR-Audio) from the server. The purpose of these

two flows is not completely clear to us because they are

streamed in parallel, but they seem to carry the same

audio stream (i.e., the audio keeps playing even when

dropping any of them, unless both are filtered simul-

taneously). Furthermore, each flow not only seems to

use a different codec, but even a different RTP encap-

sulation. The CBR-Audio messages have a 100 Payload

Type value, the Timestamp field is set to zero, and

they carry a fixed 204 byte payload that is sent every

10 milliseconds. The VBR-Audio flow has a 101 Pay-

load Type, a Timestamp equal to the Sequence number

and carries longer, variable payloads sent every 50 ms.

It is possible that this flow is related to the 5.1 surround

audio supported by some games, but we have not been

able to verify this because we have not been able to

identify the audio codecs.

The user actions, other than moving the mouse cur-

sor as explained in the previous subsection, are con-

veyed to the server in the Keys flow, with payloads

ranging from 20 to 200 bytes, and are sent on-demand

when the user presses a key or mouse button.

The two remaining RTP flows in the OnLive Stream-

ing Protocol are related to the Voice Chat function that

allows OnLive users to talk amongst themselves. Then,

the Mic flow carries the user’s microphone stream to

the OnLive server, while the Chat flow from the server

carries the audio from other users to the local client.

When the gaming session is over, and the user re-

turns to the OnLive Menu (phase 2), the client again

stops the communication with the previous server (e.g.,

OnLive Gaming Server) and employs a new UDP port

to communicate with the new server (e.g., OnLive Menu

Server).

Since this gaming phase is the most important in an

OnLive session, the remainder of this paper will be fo-

cused on it, analysing the traffic characteristics of each

flow as well as the aggregated traffic in detail, in order

to create a synthetic OnLive traffic model.
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Table 3 Summary of the traffic characteristics of five OnLive games.

pes2012 unreal3 crazytaxi aircombat 4elements

Downstream

Total time (s) 249.41 261.16 200.56 239.68 236.59
Number of packets 149004 174265 13867 153798 108619
Avg. packets / sec 597.41 667.25 691.39 641.66 459.09
Avg. packet size (B) 915.57 975.05 1014.99 955.65 722.58
Bit rate (Mbps) 4.37 5.21 5.61 4.91 2.65

Upstream

Total time (s) 249.48 261.31 200.69 239.83 236.72
Number of packets 8947 13943 6825 14677 14849
Avg. packets / sec 35.86 53.35 34.01 61.19 62.72
Avg. packet size (B) 168.49 157.8 170.08 154.81 154.91
Bit rate (Mbps) 0.0048 0.067 0.046 0.075 0.077

4 Traffic Characteristics of OnLive

This section presents the measurement methodology

followed in order to carry out the reverse engineering

of the OnLive protocol and to study its traffic charac-

teristics. This section is divided into three subsections.

We first explain the measurement scenario and method-

ology, followed by an overview of the results obtained

from the measurements carried out. Next, we focus on

the last phase of the OnLive protocol (i.e., playing a

game). We present both the server and client-originated

traffic for two specific games, explicitly selected because

they have shown the two most disparate traffic profiles

[29].

4.1 Measurement methodology

To identify the main features of the traffic patterns,

we captured traces for five different games served by

the OnLive platform. Table 2 summarises the chosen

games, along with their nicknames and genres.

Traffic traces have been captured by using Wire-

shark5 at the local computer of the gamer. Measure-

ments have been carried out from Spain to the nearest

OnLive data centre (London) by using a wired Univer-

sity connection (100 Mbps Fast Ethernet) access, with

94.17 Mbps of downstream, 71.81 Mbps of upstream, 1

ms of jitter and 38.12 ms of Round-Trip Time (RTT).

The access network characteristics have been obtained

using pingtest6 (jitter) and speedtest7 (downstream and

5 http://www.wireshark.org/
6 http://www.pingtest.net/
7 http://www.speedtest.net/

Table 2 OnLive games considered in this paper.

Game Nickname Genre

Pro Evolution Soccer 2012 pes2012 Sports
Unreal Tournament 3 unreal3 FPS

Crazy Taxi crazytaxi Racing
Air Conflicts airconflicts Flight simulator
4 Elements 4elements Puzzle

upstream bandwidth), plus the traceroute command-

line tool (RTT). In [29], the same traffic characteristics

were also obtained from a commonplace wireless home

connection (802.11n + VDSL), however, in this work

we have only considered the former network scenario.

For each game, the capture of traffic traces was

started at the time of executing the client program and

then finalised after playing for 100 seconds. Since the

time required to load each game is different, the traces’

total times differ in each case.

From each traffic trace we then obtain: (a) the packet

size, and (b) the inter-arrival time of all captured pack-

ets.

Thereafter, we thoroughly analysed the traffic traces

in order to carry out the reverse engineering of the On-

Live protocol, as well as live experiments where specific

RTP flows were filtered by their SSRC field using the

u32 binary match filter of iptables8.

4.2 Overview

Here, a detailed summary of the overall measurement
results is presented in Table 3. The table shows the mea-

sured traffic metrics for each video game. Traffic metrics

are separated into downstream and upstream directions.

8 http://www.netfilter.org/projects/iptables

Table 4 Summary of the characteristics of the RTP flows
observed in the last phase of the OnLive protocol. Values are
displayed as follows: 4elements / crazytaxi.

Avg. packet size (Bytes) Bit rate (kbps)

D
o
w

n
st

re
a
m

Aggregated 688.38 / 1017.61 2450 / 6020
Monitor 180.51 / 198.62 1 / 2
Control 96.60 / 98.88 14 / 1
CBR-Audio 274.00 / 274.00 200 / 200
Cursor 86.00 / 86.00 10 / 10
VBR-Audio 1250.25 / 1348.15 210 / 220
Video 786.69 / 1157.43 2020 / 5632
Chat 152.67 / 131.78 1 / 0.1

U
p
st

re
a
m Aggregated 154.89 / 175.10 120 / 70

Keys 155.09 / 175.11 80 / 50
Mouse 233.24 / 221.65 40 / 20
Control-ACK 86.80 / 86.65 3 / 0.1
Mic 315.00 / 253.64 0.4 / 0.2
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There is a striking difference between the bandwidth

required by OnLive cloud gaming platform and “tra-

ditional” online games, such as Call of Duty (34 kbps

in downstream and 13 kbps in upstream) [4]; World of

Warcraft (which only reaches 55 kbps in downstream

and 5 kbps in upstream) [40] and Unreal Tournament

2003 (which can be played with 28.8 kbps modems) [16,

36].

Next, the server and client-originated data traffic

from crazytaxi and 4elements is described, because these

show the most different required bandwidth values (see

Table 3). In both cases, we have considered the play-

ing phase of the OnLive protocol because it is the most

significant one in terms of traffic load.

Table 4 presents a dissection of the different RTP

flows, which have been observed in the gaming phase of

the OnLive protocol. As previously shown in Table 1, it

can be ascertained that there are seven different RTP

flows in the downstream, while there are just four in

the upstream. It is worth highlighting that the CBR-

Audio and Cursor flows have constant packet size and

packet inter-arrival times. While VBR-Audio may be

the flow composed of the largest packets, Video flow

actually comprises the majority of the bandwidth used

by OnLive.

Finally, it is also worth noting that the packets from

the Video flow reach the client in bursts. Those consec-

utive Video flow packets have exactly the same RTP

timestamp and the last packet of the burst usually has

the RTP Mark flag set. Therefore, we think that these

bursts carry a video frame that does not fit into a sin-

gle RTP message. The average burst inter-arrival times

for 4elements and crazytaxi is 16 ms; the average num-
ber of packets per burst for these two games is around

5.4 and 11, respectively; and the average burst length

(measured as the sum of RTP payloads) is around 3.8

and 12 KB, respectively.

4.3 Downstream OnLive Traffic (Server → Client)

The measurements from the server-originated traffic (down-

stream) are analysed next. The cumulative distribution

functions (CDF) of packet sizes and packet inter-arrival

times for crazytaxi and 4elements are shown in Fig-

ure 3. Results for the aggregated traffic of the play-

ing phase of the OnLive protocol are compared with

all the particular RTP flows generated by OnLive in

that phase. The aggregated values are similar to those

reported in the literature [11,29,8], thus, we will now

focus on the separate RTP flows.

Fig. 3a depicts the CDF of packet size (in bytes)

of crazytaxi. The aggregated curve is shown together

with the dissected RTP flows. The Monitor flow line

indicates that almost all packets in this flow are very

small. This effect can also be observed in the case of

the Control flow. Then, it is worth noting that both

CBR-Audio and Cursor flows exhibit a constant packet

size: the former around 270 bytes and the latter around

90 bytes. The VBR-Audio flow is mainly composed of

packets of Ethernet-like Maximum Transmission Unit

(MTU) size (i.e., 1418), although no fragmentation oc-

curs at the network layer. Furthermore, it can be ob-

served that the Video flow plays a pivotal role regarding

the CDF of the aggregated traffic. In that flow, while

65% of packets are of maximum size, the other 35%

present a uniform distribution from 50 bytes to this

maximum. Thus, as mentioned in Section 4.2, it can

be inferred that the Video flow is composed of bursts,

which cannot fit into a single RTP message, forcing the

bursts to be split9 into several packets. The Chat flow

is mostly composed of small packets.

As to the inter-arrival times (in milliseconds) of crazy-

taxi, Fig. 3b shows several important aspects which help

understand the underlying structure of the OnLive Pro-

tocol. In this case, the CDF of the aggregated traffic is

also provided. As can be observed, Monitor and Chat

are the two flows which send packets with the least fre-

quency; the average inter-packet delay is higher than 70

ms (not shown in Fig. 3b for the sake of clarity). To the

contrary, the CBR-Audio, VBR-Audio, and the Cursor

flows are predominantly constant in their inter-arrival

times; being around 10 ms, 50 ms and 10 ms, respec-

tively. It can also be observed that the OnLive Control

flow packets are mostly sent within and up to a 10 ms

period. Finally, it is important to note that the Video

flow packets are the most frequent ones, the majority

of them are being sent within and up to a 6 ms period.

The CDF of the packet size of 4elements is shown

in Fig. 3c. It is worth mentioning that most RTP flows

(Monitor, Control, CBR-Audio, Cursor and Chat) present

very similar curves to those obtained for crazytaxi. How-

ever, as can be observed, VBR-Audio and Video are

significantly different to the same RTP flows of crazy-

taxi and consequently vary the CDF of the aggregated

traffic. While 90% of the crazytaxi VBR-Audio packets

are of maximum size, only around 60% of the pack-

ets show this maximum size in the case of 4elements.

Moreover, the portion of maximum size packets from

the 4elements Video flow is about half that of crazy-

taxi. As a consequence, it can be inferred that the traf-

fic generated by the VBR-Audio and the Video flows is

dependent on the game that is being played. Thus, if

9 This video frame splitting is performed at the application
layer, that is, several RTP messages are generated, instead of
a single UDP packet being fragmented by the IP layer.
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Fig. 3 Downstream traffic characteristics of crazytaxi (Figs. 3a and 3b) and 4elements (Figs. 3c and 3d).
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Fig. 4 Upstream traffic characteristics of crazytaxi (Fig.s 4a and 4b) and 4elements (Figs. 4c and 4d).

other OnLive games were to be studied in future inves-

tigations, these two flows would be the most important

ones to be taken into consideration.

Finally, Fig. 3d presents the CDF of inter-arrival

times (in ms) of 4elements. As in the case of crazytaxi,

the Monitor and Chat flows of 4elements are the least

frequent ones (the latter does not appear in Fig. 3d

because it has a too high value of inter-arrival times). In

addition, CBR- and VBR-Audio flows and the Cursor

flow are subjected to specific inter-arrival times; 10 ms,

50 ms and 10 ms, respectively. It is interesting to note

that for 4elements, the VBR-Audio flow shows more

inter-arrival time modes than for crazytaxi. The Control

flow is roughly the same as that observed in crazytaxi.

To conclude, it is shown that the Video flow is composed

of a higher number of small packets and thus, shorter

bursts than the same flow of crazytaxi. This difference

might be related to each video game’s idiosyncrasies,

which in this case translates to a lower traffic load from

the client side.

4.4 Upstream OnLive Traffic (Client → Server)

We have performed the same analysis for the client-

originated traffic (upstream), and for the same two video-

games (crazytaxi and 4elements).

The CDF of the packet size (in bytes) of crazytaxi

is presented in Fig. 4a. It is interesting to note that

the aggregated traffic is dominated by the Keys flow,

because crazytaxi is a video game played mainly by

using the keyboard. This flow shows a maximum packet

size of 300 bytes and a minimum of around 80 bytes.

These packets, according to the CDF of inter-departure

times presented in Fig. 4b, are sent within a maximum

period of 50 ms. In the case of the Mouse flow, it is

demonstrated that packets are always sent every 50 ms

(see Fig. 4b), even though the mouse is not used during
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the playing session. In addition, Mic flow packets are

also observed despite the fact that there was no voice

chat. Finally, as observed in the figures, Control-ACK

packets are mostly of about 90 bytes and are sent within

a maximum of 10 ms period.

To end this study, the CDFs of the packet size (in

bytes) and inter-departure times (in ms) of 4elements

are presented in Figs. 4c and 4d, respectively. In this

case, the aggregated traffic is mostly related to the

user’s keyboard input (Keys flow), which presents sim-

ilar features (of packet size and inter-departure times)

to the flow observed in crazytaxi. This is due to the fact

that 4elements is a game which is also played with the

keyboard, although some mouse interaction is required

as well. The rest of RTP flows show similar features to

those shown by crazytaxi.

5 Modelling OnLive Traffic

Once the different OnLive flows have been fully charac-

terised, we have separately modelled the traffic of 4el-

ements and crazytaxi. For each of the games we model

both server-to-client and client-to-server traffic. As pre-

viously stated, each of the UDP flows is comprised of

several RTP flows. We model separate RTP flows but,

in order to save space, we only present the goodness

of fit for the model of the aggregated OnLive traffic.

Aggregation is performed on flows from the same game

and of the same direction (i.e., we depict goodness of fit

separately for client-to-server and server-to-client traf-

fic). Besides the modelling methodology, this section

also defines the parameters of the model and the good-

ness metrics for validating the resulting models, as well
as providing a short description of the traffic generator

implementation. At the end, we compare the empirical

traces against the generated traffic in order to validate

our model.

5.1 Modelling methodology

In this section we briefly present the methodology em-

ployed in the process of traffic modelling. We present a

model of individual packet sizes and packet inter-arrival

times (IAT). In addition, we have modelled the size

and inter-arrival times of bursts of packets sent within

the Video RTP flow. These bursts are identified using

their RTP timestamp value (i.e., payloads of all sub-

sequent packets with the same RTP timestamp value

are grouped into one burst). These can be considered

as Application Protocol Data Units (APDUs).

It should be noted that the RTP headers are not

included in the packet size (PS) of the model, so the

model only comprises of RTP payload traffic. When

inspecting the packets obtained from the traffic traces,

we first remove 58 bytes of headers from each packet

(14 bytes in Ethernet, 20 bytes in IPv4, 8 bytes in UDP,

and 16 bytes in RTP), and then perform modelling on

the remaining payload.

Due to the relatively small packet rates and packet

sizes we decided to ignore some of the RTP flows in the

modelling process as their contribution to the overall

traffic is negligible. For the server-to-client traffic we

model the following flows: CBR-Audio, Cursor, VBR-

Audio, and Video, while we ignore Monitor, Control

and Chat. For client-to-server traffic, we model the Keys

flow and ignore Mouse, Control-ACK, and Mic flows.

We perform traffic modelling for each of the RTP

flows by following the approach introduced by Paxson

[33]. The algorithm is described in detail in [24]. In this

paper we only present it very briefly:

1. Examination of the probability distribution of the

data set and selection of an appropriate analytical

distribution. This is usually done through the vi-

sual examination of the Probability Density Func-

tion (PDF) or Cumulative Distribution Function

(CDF) of the data.

2. Use of graphical methods for distribution compar-

isons such as Quantile-Quantile plot (Q-Q plot) or

Probability Plot (P-P plot). Q-Q plot compares two

distributions by plotting their quantiles against each

other, while P-P plots two cumulative distribution

functions against each other. If the resulting points

on the plots are in a straight line, this means that

the distributions are identical, but in practice there
are usually deviations in the fit. By using these plots,

it is easy to observe where deviations occur (e.g.,

lower tail, the main body, upper tail), and in these

cases is may be necessary to model the dataset with

a split distribution.

3. Fit the data set onto an analytical distribution. We

used the Minitab10 tool to determine the parame-

ters of the distribution. Minitab implements both

the Maximum Likelihood Estimates (MLE) and the

Least Squares (LSXY) methods, from which we use

the parameters of the LSXY method.

4. Calculation of the λ2 discrepancy measure. As the

standard goodness of fit tests are biased for large

and messy datasets, a discrepancy measure is used

[34]. While we do not report the discrepancy’s calcu-

lation procedure here, an interested reader can find

it in several works [33,24,41].

10 http://www.minitab.com/
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5. Examination of the tail. We searched for deviations

using the following expression:

ξ = log2
a

b
(1)

Where a is the number of instances predicted to lie

in a given tail, and b is the number of instances that

actually do lie in that tail. If b equals zero, it is re-

placed by 0.5. If the values of ξ are positive, it would

suggest that the model overestimates the tail, and

negative values indicate that the tail is underesti-

mated.

6. Calculation of the autocorrelation function of the

trace on which the modelling is based. Usually, short-

term autocorrelation, or the autocorrelation at lag

1 is reported.

5.2 OnLive Traffic Model

In this section we present the proposed models of packet

sizes and packet IATs for the OnLive RTP flows of in-

terest for 4elements and crazytaxi. The reported val-

ues are in bytes and milliseconds and are presented in

Tables 5 and 6. It should be noted that a Lognormal

distribution is described with scale (σ), location (µ),

and threshold (γ) parameters, and Weibull distribution

described with scale (λ), shape (k) and right limit. Log-

normal, Weibull, Uniform, and deterministic distribu-

tions are designated with Logn., Weib., Unif., and De-

ter., respectively. Each table comprises: (1) the traffic

direction; (2) the SSRC of the modelled flow; (3) the

acronym of the flow; (4) the size of the dataset (i.e.,

number of units on which the modelling procedure has

been carried out); (5) the model of packet sizes (PS)

and IATs and the probabilities of specific distribution

if split modelling is applied; and (6) the values of the

model parameters.

As observed in Tables 5 and 6, the server’s CBR-

Audio and Cursor flows are game-independent. The ma-

jority of flows have constant packet rates (i.e., a fixed

inter-arrival time). Only the user input (Keys flow) and

Video flow show a significant dispersion of the inter-

arrival times. The traffic flow carrying player’s keys de-

picts two characteristic IAT values, 10 ms and 50 ms,

the latter being an upper limit (i.e., the game does not

send the packets of this flow at a lower rate than 20

packets per second). These two values represent more

than 50% of the overall CDF for 4elements, whereas

it is only 30% of CDF for crazytaxi, of which the re-

maining values are uniformly distributed between 0 and

40 ms. The most significant difference between games

is in server-side Video flows. Packet sizes of both games

are modelled with a combination of Uniform distribu-

tion from 0 to 1355 bytes and a deterministic portion at
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Fig. 5 CDFs of empirical APDU sizes (thick lines) and fit-
ted 3-parameter Lognormal distribution (thin lines) for video
flows of 4elements and crazytaxi.

1356, which is the highest value of packet size appear-

ing in the video flow. Video flow comprises a certain

part of subsequent packets with near 0 ms IAT values,

while the remaining packets are modelled using a Log-

normal distribution. VBR-audio stream consists of two

values: a lower endpoint at 244 bytes and higher end-

point at 1384 bytes. Also, in 4elements we observe 30%

of the packets uniformly distributed between these two

endpoints, while in crazytaxi there are almost no such

packets.

As for the Video burst sizes, we have observed for

both games that they are well approximated with a

3 parameter Lognormal distribution; as indicated by

Figure 5. It can be assumed that these two CDF lines

present limits of Video burst sizes between which all

other OnLive games would fit, as these two games rep-

resent the two limits (i.e., games with highest and low-

est bandwidth usage out of all the inspected games). In

regard to Video burst IATs, they are shown to be very

regular and can be well approximated with a determin-

istic value of 16 ms.

As for the client side, the packet sizes of both games

are well approximated with a Uniform distribution. Crazy-

taxi has a slightly wider set of values for packet sizes

sent from the client. It is interesting to note that the

IATs of the Keys flow are limited to 50 ms. This means
that packets in this flow are sent at a faster rate (i.e.,

the user’s driving input is very fast), but they will never

be sent at a smaller rate than 20 packets per second.

These differences between flow characteristics on the

input side can be attributed to the nature of the game

(racing vs. puzzle).

As previously stated, we have modelled specific RTP

flows, and examined how accurate the model is by cal-

culating the discrepancy measure at the UDP aggre-

gated traffic level. The computation of the discrepancy

for all aggregated traffic is simple for packet sizes, as

packet sizes do not change with flow aggregation. On

the other hand, IAT values for aggregated traffic are

dependent on the interaction between different flows.

Due to deterministic modelling, a problem occurs if all

flows are started at the same time - extremely bursty

traffic is created because of the fixed parameters of the

model. A high number of packets would be sent and

received almost at the same time, resulting in a large

increase of the near zero values in the inter-arrival time
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Table 5 Network traffic model parameters for crazytaxi.

Direction RTP SSRC Acronym Count PS model PS Parameters
[bytes]

IAT Model IAT parameters
[ms]

Downstream

0x30000 CBR-Audio 14710 Deter. a=216 Deter. a=10
0x40000 Cursor 3156 Deter. a=28 Deter. a=50
0x50000 VBR-Audio 2460 Deter. p=7.76%

Deter. p=92.24%
a=244
a=1384

Deter. a=50

0x60000 Video 95718 Unif. p=36.06%
Deter. p=63.94%

a = 0, b = 1355
a = 1356

Deter. p=57.25%
3-Logn.
p=42.75%

a = 0,
µ = 0.34, σ =
1.73, γ = −2.25

Upstream
0x0XXXX Keys 5107 Unif. a = 25, b = 210 Deter. p=32.31%

Weib. p=67.69%
a = 50
λ = 22.70, k =
1.33, limit = 50

Table 6 Network traffic model parameters for 4elements.

Direction RTP SSRC Acronym Count PS Model PS Parameters
[bytes]

IAT Model IAT parameters
[ms]

Downstream

0x30000 CBR-Audio 18254 Deter. a=216 Deter. a=10
0x40000 Cursor 3931 Deter. a=4 Deter. a=50
0x50000 VBR-Audio 3958 Deter. p=5.32%

Unif. p=30.28%
Deter. p=64.4%

a=244
a=245, b=1383
a=1384

Deter. a=50

0x60000 Video 62714 Unif. p=73.93%
Deter. p=26.07%

a = 0, b = 1355
a = 1356

Deter. p=23.23%
3-Logn.
p=75.77%

a = 0,
µ = 0.89, σ =
122.06, γ = −3.89

Upstream
0x0XXXX Keys 5107 Unif. a = 25, b = 170 Deter. p=43.91%

Deter. p=9.36%
Weib. p=46.73%

a = 9
a = 50
λ = 12.40, k =
0.89, limit = 50

of the aggregated traffic. To alleviate this problem we

need to start generating separate RTP flows at differ-

ent points in time. We extracted the starting points of

separate flows from the recorded empirical datasets in

the order of hundreds of milliseconds, and traffic gen-

eration procedure was started based on those empirical

timestamp values.

In Tables 7 and 8 we present the goodness of fit

for our models. The analysis is presented on the aggre-

gated traffic for each game and for each direction. For

the numerical description of the goodness of fit we use

the discrepancy metric. In these tables we also present

the data regarding the tails of the distributions, partic-

ularly the number of observation in the tail, the per-

centage of observations in the tail in comparison with

the whole dataset (as the value of the ξ parameter),

and whether the model underestimates the tail “-” and

“0”(which appears in the case of models that do not

use continuous distributions) or overestimates it “+”.

Additionally, we report the autocorrelation at lag 1 of

the empirical dataset on which modelling is based.

From the data in Tables 7 and 8, it can be ascer-

tained that most of the models have very good fits (i.e.,

very small discrepancy values). Only the models for the

packet sizes of upstream traffic show less accurate fits

(i.e., high discrepancy values). This is due to packet

sizes being modelled with a Uniform distribution result-

ing in a straight line (model) through stepwise function

(empirical data) in the CDFs, as observed in Figures

6a and 7a. Although the discrepancy values of these

two models are high, we think that these models are

appropriate because (a) they are sufficiently general to

be applied to different games, and (b) since the packet

sizes in the upstream are very small, even significant

discrepancies in the model will cause only small vari-

ances in the upstream bandwidth usage. Furthermore,

the amount of data observed in tails is negligible. The

values of ξ indicate that the model under/over esti-

mation of the empirical data is not severe. The cor-

relation values presented are very low. Interestingly, we

have found higher correlations for the IATs of upstream

packets at lag 7 for both games (i.e., correlations values

around 0.4). To conclude, it should be pointed out that

the mathematical description of the models’ goodness

of fit illustrates that the models presented are good fits,

providing a quality in line with similar models found in

the literature (e.g., [13]).

5.3 Experimental validation

For the experimental validation of the OnLive model,

we have used our previously developed software archi-

tecture for User Behaviour Based Network Traffic Gen-

eration (UrBBaN-Gen) [41]. UrBBaN-Gen is able to

control the traffic generation process based on the player

behaviour models. As we have not obtained the be-

havioural data of several players on the application level

(e.g., how often each game is played and for how long),

we simply set the behavioral parameters of UrBBaN-
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Fig. 6 CDFs of PS and IAT of OnLive traces, the theoretical model and data extracted from the generated traffic.
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Table 7 Goodness of fit for crazytaxi traffic models.

Direction Parameter Discrepancy Tail Tail% ξ Estimation ACF

Downstream Packet size 0.02064 6 0.00433 0 0 0.09376
Downstream IAT 0.07081 53 0.03823 -1.72591 - 0.03296
Upstream Packet size 57.53403 253 3.84907 0 0 -0.00630
Upstream IAT 0.38168 35 0.51546 0 0 0.01755

Table 8 Goodness of fit for 4elements traffic models.

Direction Parameter Discrepancy Tail Tail% ξ Estimation ACF

Downstream Packet size 0.12806 6 0.00555 0 0 0.22845
Downstream IAT 0.05063 51 0.02868 -1.70927 - 0.12358

Upstream Packet size 117.97917 43 0.29 0 0 0.00912
Upstream IAT 0.08321 12 0.08129 0 0 0.11913

Gen to generate one flow of each game for the du-

ration of the whole experiment. For traffic generation

in UrBBaN-Gen we use the Distributed Internet Traf-

fic Generator (D-ITG) developed by the University of

Naples [1].

In order to use UrBBaN-Gen to generate the traf-

fic of OnLive games, we had to implement the network

model of each flow in D-ITG. As some models are sim-

ple, their traffic can be generated from the command

line interface of D-ITG. Other more complex models

require the implementation of application-level mod-

els within D-ITG. We generate the traffic on a Linux

Ubuntu 12.04 run in a virtual machine hosted by a PC

with a i7@2.3GHz CPU and 4GB of RAM. Traffic was

generated and captured on the loopback interface. Due

to limitations in the traffic generator, each RTP flow

was generated as a separate UDP flow.

In Figs. 6 and 7 we present the results of our mod-

elling procedures for crazytaxi and 4elements, respec-

tively. Both figures are comprised of four graphs. Each

depicts one of the four parameters modelled: client-side

packet size, client-side IAT, server-side packet size and

server-side IAT. Each of the graphs contains two CDFs:

one from the OnLive traces, and another from the data

extracted from the generated traffic. In this way, we

can verify our model by comparing generated traffic

and real captured traffic.

As observed, the generated traffic closely resembles

the captured traffic for most of the parameters pre-

sented. The roughest estimation is observed in the client

packet sizes (Figs. 6a and 7a), which have a stepwise

function indicating that packet sizes which are sent as

player input are limited to a set of values. We believe

that using Uniform distribution as an approximation

is well suited, as modelling specific packet sizes does

not provide any additional information. In addition,

slight discrepancies can be observed in the server side

IATs (Figs. 6d and 7d), because of the modelling proce-

dures being performed on separate flows which are then

joined as one. The deterministic modelling of the IATs

of flows CBR-Audio and Cursor causes “steps” on the

CDF of the generated traffic. The best fits are observed

in server-side packet sizes of crazytaxi and client side

IATs of 4elements (Figs. 6c and 7b). Furthermore, our

calculations of the discrepancy measure are confirmed

as the models which have lower discrepancy values in

Tables 7 and 8 have CDFs of the model and OnLive

captured traffic almost coinciding in Figures 6 and 7.

To summarise, while modelling was performed only

on a subset of existing flows, the generated traffic proves

to be a good representation of the whole empirical traf-

fic. This confirms that flows which have not been mod-

elled form a negligible portion of the traffic. The models

are implemented in the D-ITG network traffic genera-

tor, which enables not only tests in a simulated environ-

ment, but also in real networks. It is established that

Video, VBR-Audio and Keys flows are clearly game-

dependent. A common model for the two games exam-

ined has been provided (i.e., for a specific flow type

in each game the same distribution or a combination

of distributions is used). Therefore, if more games are

modelled, the methodology and distributions presented

here can be employed which, in turn, makes the overall

modelling task much simpler. For flows common to all

games on the OnLive platform, the models provided in

this paper can be used as are, whereas for the varying

flows provided, the distributions and their combinations

can be used, although their parameters may need to be

adjusted.

6 Summary and Future work

Cloud gaming, as a new approach to the world of online

games, heavily modifies the properties of network traf-

fic by increasing both the requirements of bandwidth

used by a factor of 100 or more, as well as of network

latency. A comparison of different cloud gaming plat-
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forms is needed to identify any general properties of

cloud gaming traffic. However, comparing two different

cloud gaming platforms first requires the understand-

ing of the employed protocols, and since most protocols

used by the cloud gaming providers are proprietary, the

only way to understand them is by reverse engineering.

In this paper we dissect the protocol of one of the main

cloud gaming platforms - OnLive. We have collected

and analysed extensive traffic traces from several video

games of different genres. It has been observed that

an OnLive gaming session is divided into three phases:

(a) authentication and global load balancing; (b) the

OnLive main menu; and (c) playing a game. We have

fully characterised the traffic of the last phase (being

the most important one in terms of time players spend

in it and of generated traffic load). A detailed analysis

is performed on two video games (crazytaxi and 4ele-

ments) that have the most dissimilar traffic profiles. We

have identified the following RTP flows in the OnLive

traffic: Monitor, Control, CBR-Audio, Cursor, VBR-

Audio, Video, and Chat in the downstream direction,

and Keys, Mouse Control-ACK, and Mic in the up-

stream direction. The Video flow generates the largest

network traffic load. Furthermore, we have proposed a

per-flow traffic model of OnLive for the same two video

games. Finally, to demonstrate the correctness of our

proposal, we have validated the generated traffic com-

paring it with the aggregated captured one, and we can

conclude that our model accurately describes the On-

Live traffic.

For future work, we plan to conduct a reverse engi-

neering of the Gaikai protocol which will enable us to

compare two different cloud gaming platforms and ex-

tract the common characteristics of cloud gaming traf-

fic between the two platforms. Additionally, we plan to

investigate different network scenarios (e.g., wired/mo-

bile, bandwidth, delay, jitter, etc.) and how they impact

such cloud gaming traffic characteristics.
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